

Nanolaminate Hybrid Mirror Technology and X-Sat Flight Experiment

Outline

- Motivation for Developing New Mirror Technology
- Description of an Actuated Hybrid Mirror (AHM)
- The X-Sat II Experiment
- Summary
- Questions

Current Large Optics Paradigm

- Long lead times several years to produce
- Significant investment \$10s M per mirror
- Limited supply of ultra-low expansion (ULE) glass and vendors
- Manufacturing difficulties in light-weighting
- No ability to correct mirror figure on orbit

Potential of Hybrid Mirrors

- Rapid manufacturing
 - Replication & casting reduces time from years for glass to several months for hybrid
- Significantly lower production cost
 - Common materials and production hardware
- Low areal density (\sim 7 kg/m²)
 - Larger mirrors, higher orbits
- Actuation enables:
 - On orbit figure correction
 - Relaxation of manufacturing tolerances and testing

Description of an Actuated Hybrid Mirror

Actuated Hybrid Mirror (AHM)

- The combination of distinct technologies
 - Facesheet: Nanolaminate foil (DOE/LLNL)
 - Substrate/figure control: Actuated silicon carbide (Xinetics, Inc. Devens MA)
 - Metrology hardware and algorithms: Wavefront sensors (NASA/JPL)
- AHM represents a stepping stone to a future, all nanolaminate-based mirror system

	Nano Laminate	0.4 kg/m²
HITT	SiC Substrate	4.8 kg/m²
181818181	Actuators	1.2 kg/m²
513151	Bipods	0.4 kg/m²
	Harness	0.2 kg/m²
	Total	7.0 kg/m²

15-cm Flat SPA Mirror Optical Data for Nanolaminate Bonding Process

Before Bonding

Foil on mandrel PV: 3.120 λ RMS: 0.898λ Power: -3.179 λ

After Bonding

Foil Bonded to SiC substrate (mandrel removed)

PV: 3.28λ

RMS: 0.8810λ Power: 3.064λ

Nanolaminate Foil

Cross-Section

Finished Foil

600 Å Copper

100 Å Copper-Zirconium

- Multi-layer metallic foils grown by sputter deposition onto metal or glass mandrel
- Very thin (~0.1 mm), lightweight, flexible with good optical performance
- Final shape and surface finish defined by mandrel
- Low areal density 0.2 kg/m² to 0.8 kg/m² depending on material & thickness
- Rapid Manufacture \sim 48 hours per foil independent of diameter
- 15 Foils made off single mandrel with no degradation to mandrel

Nanolaminate Foil Fabrication

DC magnetron sputtering chamber

Actuated SiC Substrate

- Leverages work under joint MDA/NRO program
- Lightweight, very stiff, highly dimensionally stable material
- Nanolaminate facesheet obviates need for polishing to optical tolerances

• Utilizes lead-magnesium-niobate (PMN) low-power ceramic actuators

for figure control

Negligible hysteresis

- Minimal creep
- No poling-related aging

The X-Sat II Experiment

Objectives/Goals

- Design, build, test and fly a telescope utilizing a lightweight, rapidly manufacturable primary mirror
- Demonstrate near-diffraction limited performance in an operational space environment (microgravity, thermal loading, vibration)
- Obtain opportunistic images of the earth and celestial objects
- Achieve TRL 7 by 2007

X-Sat Payload

- Cassegrain Telescope with 0.75m Actuated Hybrid Mirror as Primary Mirror (PM)
 - Phase Shack-Hartman and Retrieval cameras for coarse & fine wave-front sensing, mirror metrology & control.
 - 1024x1024 CCD focal plane array for earth/sky imaging
 - Wide-field spotting camera for visual reference
- Proven heritage for many key components: focal plane array (flt spare, Mars Pan Camera), filter wheel (flt spare, Mariner), shutter mechanism (flt design, Stardust/Cassini), cover door and latch mechanism (flt design, Genesis)

X-Sat Experiment Bus

Hitchhiker sidewall mount flown in STS cargo bay

- All necessary experiment support functions provided through well-defined interfaces
 - Power, Avionics, data acquisition, communication
- Shares Cargo Bay with other Payloads
- Experiment will not require specialized shuttle crew training
- Payload Integration/management, data transfer, telecom, and ground support provided by NASA Goddard Space Flight Center
- Letter indicating NASA sponsorship

On-Orbit Experiment

- Two-phase test and demonstration of AHM
 - Phase 1: Mirror Metrology, Actuation Testing, and Figure Control
 - Performed prior to opening of Aperture Cover
 - Integral heaters provide thermal disturbance
 - Most of Experiment's Objectives
 - Phase 2: Earth/Sky Image Collection under thermal & spacecraft vibration conditions
 - Near real-time figure control of PM

Experiment Operations Timeline

Conditions	Door closed	Door open	Fast close door/ WFS/open door	SHWFS	PRCWFS	Phase retrieval	Phase diversity	Prescription retrieval	WFC commands PM actuators	Thermal closed-loop control	Thermal open-loop control	Heater thermal disturbances	Shuttle dynamic disturbances	Accelerometers monitored	View ground	View space	Timeline	Launch	Expt power-up	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Re-entry
1. Initialization	•	П	П	•	•	•	П	•	•	一	•	一	•	•	一										П	П				
Long-term stability, door closed	•			•	•	•		•	•	•			•	•																
3.WF control of thermal disturbances	•			•	•	•		•	•	•		•	•	•																
Thermal control of thermal disturbances	•			•	•	•		•	•	•			•	•																
5. Measure stability, door open		•	•	•	•	•		•	•	•			•	•	•	•														
6. Deep-space observations		•	•		0	•	•	•	•	•			•	°		•														
7. Ground observations		•	•		0	•	0	•	•	•			•	•	•															
8.WFC calibration	•			•	•	•			•	•			•	•																
9. On-orbit dynamics													•	•																
●= Primary													on	da	ry															

Summary

Summary

- Nanolaminates and nanolaminate hybrids are creating a new paradigm for lightweight, large aperture primary optics
 - Overcomes many issues of conventional glass mirrors
- An AHM X-Sat will provide credible flight heritage and boost TRL to 7 by 2007
- New capabilities enabled by actuation such as on orbit figure correction

Questions?

Backup Charts

Lab Metrology

- Lab setup utilizes WF sensor modules to simplify operations
 - AOA Wavescope Shack-Hartman sensor provides large capture range for initial phasing
 - JPL Phase Retrieval Camera (PRC) provides a source, highresolution image-based WF sensing, and direct imaging for scoring
- Fold mirror permits off-the-table vertical placement of the test piece